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SUMMARY

Experience has shown that the flutter prediction process for airplanes can
be greatly affected by strong concentrated nonlinearities which may be local-
ized in the linking elements of the control mechanism, in the pivot joints of
variable-sweep-wing systems, and in the connecting points between wing- and
pylon-mounted external stores. The principle of equivalent linearization
offers an efficient possibility for solving the related nonlinear flutter equa-
tions in the frequency domain as a complement to the well-known time domain
procedures. Taking as an example an airplane with nonlinear control character-
istics, it is demonstrated how the equivalent linearization approach can be
extended to rather complicated systems with multiple sets of strongly inter-
acting, concentrated nonlinearities.

INTRODUCTION

Routine flutter analyses generally imply linearized representation of both
the structural and the aerodynamic properties. This approximation has proved
to be a useful basis for the flutter clearance of a large number of aircraft
prototypes. There remains, nevertheless, a significant number of flutter cases
suffering from rather poor agreement between analysis and test results. Many
of these disagreements can be traced to structural nonlinearities. A survey of
the various types of structural nonlinearities, their physical sources, and
their effects on aircraft vibration and flutter is given in reference 1, which
indicates that strong concentrated nonlinearities are a common feature of the
control systems of mechanically controlled airplanes. From reference 2, which
presents a new experimental-numerical approach to determining the dynamic char-
acteristics of hydraulic aircraft control actuators, it becomes obvious that
flutter of aircraft with hydraulic controls may also be greatly affected by
strong concentrated nonlinearities. References 3 and 4 focus on the special
case of a modern variable-sweep-wing fighter airplane with concentrated non-
linearities in the wing pivot mechanism and in the corresponding single-point
external store suspension system. Reference 5 and, in particular, reference 6
describe several concepts of how the governing equations of airplanes with con-
trol system nonlinearities can conveniently be formulated in terms of consis-
tent sets of both measured modal data and nonlinear force-deflection diagrams.
The nonlinear flutter equations can be solved in the time domain by using ana-
log computer techniques (see refs. 5 and 7) or by numerical integration. 1In
addition to this time domain approach, promising attempts have been made to
solve nonlinear flutter problems in the frequency domain by employing the prin-
ciple of equivalent linearization (see ref. 8). The effectiveness and accuracy
of this equivalent linearization approach were impressively demonstrated for a
semispan wing-aileron model with a single nonlinearity in the aileron hinge;
the calculated and the wind-tunnel test results agreed very well (see ref. 1).

Application of the equivalent linearization approach to systems with more
than one nonlinearity creates some additional, though still solvable, difficul-



ties. These difficulties are associated with an incompatibility between the
input data representing the equivalent stiffness and damping properties of the
nonlinearities involved and the corresponding output deflections. 1In coping
with this problem, a recent investigation (ref. 9) describes the application
of a method called the describing function method! (ref. 10) to the special
case of a flexible missile control surface with simple undamped free-play non-
linearities in both the roll and pitch degree of freedom of the root support

stiffness.

The particular concern of the present study is the extension of the equiv-
alent linearization concept to the flutter analysis of complete airplanes with
strong hysteresis-type nonlinearities in the control system. Antisymmetrical
flutter of a sailplane involving strongly interacting rudder and aileron non-
linearities is used as a realistic example to demonstrate the applicability of
the method proposed.

SYMBOLS
A,B,C mass, damping, and stiffness matrices, respectively, defined in terms
of physical deflections
AA,AB,AC matrices of mass, damping, and stiffness changes, respectively,

defined in terms of physical deflections

b viscous damping coefficient of control surface hinge

c stiffness coefficient of control surface hinge

f frequency, w/2m

F force or moment acting on control surface

g absolute amplitude value, see equation (31)

h bending deflection of quarter-chord line of lifting surface

3 imaginary unit, V:T

L half-chord length

Mg flight Mach number

M,D,K generalized mass, damping, and stiffness matrices, respectively

AM,AD,AR generalized matrices of mass, damping, and stiffness changes,
respectively

1A slightly modified form of the equivalent linearization approach.



N number of controls involved in flutter case

P column matrix of external forces

q column matrix of generalized coordinates

Q column matrix of generalized forces

R matrix of unsteady aerodynamic forces R, related to normal
modes &,

t time

u column matrix of physical deflections

v flight speed

a rotation about quarter-chord line of lifting surface

B control surface rotation about hinge line

Y damping loss angle, 2C

r diagonal matrix of damping loss angles

€ matching function, see equation (30)

[ damping expressed as ratio to critical damping

n absolute amplitude value, see equation (29)

A diagonal matrix of square values of circular normal frequencies
w, = 2Tf,

p air density

T control surface chord length ratio (see fig. 11)

¢ integration variable, wmt

¢ modal matrix of normal modes &,

w circular frequency

Subscripts:

A aileron properties

L linear properties

NL nonlinear properties



r ' normal mode index, r =1, 2, . . «, N

R rudder properties
V,u,0 indices of concentrated nonlinearities involved
Superscripts:
F flutter speed
. T transposed matrix
0 starting values

NONLINEAR EQUATIONS OF MOTION

Reference 6 offers a choice of several modal synthesis concepts which can
conveniently be used to establish the aeroelastic equations of motion for the
flutter analysis of airplanes with strong concentrated control system nonlin-
earities. In accordance with one of these concepts (concept II of ref. 6), the
originally nonlinear airplane structure is physically converted to an artifi-
cially linearized test configuration by replacing the nonlinear elements by
linear stiffnesses with low damping. The normal mode characteristics of the
linearized test configuration serve as a consistent basis for the calculation
of both the unsteady aerodynamic reactions and a set of nonlinear coupling
terms retransforming the test configuration to the actual system. The nonlin-
earities can be determined statically in the form of force-deflection diagrams
or dynamically by direct measurement of equivalent stiffness and damping values
versus vibration amplitude. The equations of motion of the modified linearized
test configuration, formulated in terms of physical deflections, can be written
in matrix notation as follows:

Au + Bpu + Cru = P (M)
where
A mass matrix
By, viscous damping matrix
CL, stiffness matrix
P column matrix of external forces, for instance, unsteady aerodynamic
forces
u column matrix of physical deflections; 0 and u are first- and

second-order differentials with respect to time ¢t
The dynamic behavior of the unchanged nonlinear system may be described by

Au + Bu + Cu = P : (2)



where

B

By, - ABL + ABNL

(3)
C

Cp - ACL + ACNL

and where AC;, and AB;, denote the stiffness and damping properties of the
artificial linear elements and ACy;, and ABy;, denote the amplitude-dependent
stiffness and damping of the replaced nonlinearities.

Development of the arbitrary deflection vector u in a series expansion
of the normal modes &, of the linearized test configuration yields

u = %q (4)
where
¢ modal matrix containing normal modes ¢, as columns
q column vector of generalized coordinates

Substituting the modal transformation (eq. (4)) into equation (2), premultiply-
ing by ¢T, and taking into account equation (3) lead to the generalized equa-
tions of motion of the unmodified nonlinear system

Mg + (D, - ADp, + ADyp)a + (Kp - ARy, + ARyp)q = Q (5)
where

M = 0Tad b

pf, = $TB®

ADyp, - ADp, = 9T (AByy, - ABp)®

Ky, = ¢Tcpo ©

ARy, - ARp = 0T (Acyy, - Acp)?®

Q = oTp J

Consider the vth of N controls involved in a flutter case; the corre-
sponding part of the modal matrix ® degenerates to the row matrix

¢V = [BV1'BV2" . -lerIO . -len] (7)
with By, denoting the control rotation in the section where the control force

is applied. Accordingly, the matrices ABy; - 8By, and ACy; -~ AC, degenerate
to the 1 x 1 matrices



MByy,,v = MBr,,v = byg,,v(By) - bp,y

ACyr,,v - &r,,v = onn,v(By) - cp,v

(8)

where ¢, y and 'bL,v define the artificial hinge stiffness and damping of
the vth control surface and oyp,y(By) and by, (By) define the amplitude-
dependent stiffness and damping of the replaced nonlinearity of the vth control
surface. Hence,

\
N N
Mgy, - ADp, = > (ADyp,,v - 8Dp,, ) = > OyTlbyp,u(By) - by, 1%y
V=1 V=1
(9)
N N
BRyp, - 8Ky, = ZE; (8Ryr,v — &Kg,y) = EE; oyTlenn, v(By - cp,yldy
V= V= )

The normal modes &, of the linearized test configuration satisfy the orthogo-
nality condition,

Tad = M
oTc ® = MM = Kp, (10)
where
M diagonal matrix of generalized masses M,
Kr, diagonal matrix of generalized stiffnesses Ky, p = w%,er
AL diagonal matrix of square values of circular normal frequencies Wy, ¢

The generalized damping matrix D, which is not necessarily diagonal, was
defined in equation (6). Without damping coupling, matrix Dj also becomes
diagonal with the generalized damping elements Dy, .

The unsteady aerodynamic forces P generally depend on time t, flight
Mach number Mg, flight speed V, and air density pP. Developing P in a
series expansion of unsteady aerodynamic forces R, related to the normal

modes %, 1leads to

0 = 9T R(Mg,v,0,t) g (11)
where

R(Mg,V,0,t) = [Ry,Ry,. « ./Rp,e .+ «,Rp] (12)
As mentioned previously, application of the equivalent linearization approach
to nonlinear flutter problems requires a transformation of the differential

equation (5) into the frequency domain. Accordingly, by assuming simple har-
monic motions,



a(t) = qelt (3 = VD (13)
where W is the circular frequency, equation (5) reduces to
[-w2M + jw(Dp, - ADp, + ADyy) + Ky, - ARy, + ARyp, - ¢T R(Mg,V,0,0)lq =0 (14)

Solutions of this equation can be obtained mi:ch more easily by expressing the
viscous damping forces in terms of complex stiffnesses or damping loss angles.
By so doing, equation (14) becomes

N N
~w2M + j| TRy, = > vy,,v 8Rp,v + > YL, v (Bv) ORyp,, v
V=1 V=1

+ K, - ARy, + ARyp, - 8T R(Mg,V,0,0))q = 0 (15)

Damping can also be expressed by Z as a ratio to the critical damping. The
relation between £ and Y is [ = Y/2. 1In equation (15), I denotes the
diagonal matrix of the damping loss angles Y, associated with the general-
ized stiffnesses K,. The matrices AKL,v and ARyp.,y are defined in equa-
tion (9). The damping loss angles Yr,v and 7Yyr,v(Py) represent the
structural damping coefficients associated with the hinge stiffnesses L,V

and oy, v (By), respectively, which are defined in equation (8). The matrices
M, I', A;, and ¢, which describe the dynamic behavior of the modified linear-
ized system, can be measured in a fairly simple ground vibration test (GVT).
These modal data and some related geometrical data are given in detail in
appendix A for the sailplane taken as an example of a nonlinear system.

Because of the high aspect ratio and the comparatively low maximum speed of
this sailplane, incompressible strip theory is used to calculate the unsteady
aerodynamic forces based on the measured mode shapes ¢r. The method of deter-
mining the nonlinear terms Yyr,,v(By) and Akyp vy is described in the follow-
ing section.

EQUIVALENT LINEARIZATION APPROACH

As is known from reference 8, an elastodynamic system with nonlinear
stiffness and damping elements can be approximately described as a linear sys-
tem for constant-amplitude vibrations at any arbitrary amplitude level. The
fundamental idea of this equivalent linearization approach is based on the
assumption that a nonlinear elastomechanical element can be approximately
replaced by a linear substitute element with equivalent stiffness and damping
energies when activated at equivalent amplitude levels. The accuracy of the
approach, depending on the special problem to be investigated, can be assessed
by procedures described, for instance, in references 11 and 12 for application
to systems subjected to simple harmonic excitation. In addition, reference 12
shows a simple way to solve problems with preloaded nonsymmetric nonlinearities,
such as those arising in systems subjected to maneuver loads.



In accordance with reference 8 the equivalent linear coefficients of a
nonlinear force-deflection diagram can be calculated from

2n
onL(B) L jﬂ F(B cos ¢,~Bw sin ¢) cos ¢ &
8 Jo=0

1 2n

(16)

YL (B) F(B cos ¢,-Bw sin ¢) sin ¢ dab

B o (B) 7B =0

where onp(B) and 7Yyp(B) define the complex stiffness,

*
enL(B) = exp,B) [1 + 3 Yy, (8)] (17)

and where the force F is a nonlinear function of the deflection £. 1Inte-
gration is carried out over a full period of oscillation using ¢ = wt as
integration variable.

In view of the particular flutter case to be dealt with subsequently, two
special types of bilinear force-deflection diagrams, sketched in figures )
and 2, are evaluated by means of equation (16). The diagram in figure 1 is
characterized by a low stiffness c¢7 for

-By £ B < By (18)

where 61 denotes the amplitude corresponding to the maximum stroke of the
control surface. For

;B1 > B > B, _ (19)

the stiffness assumes the much higher value c¢j because of kinematic limita-
tion beyond the blocking point (see figs. 1 and 2). Hence it follows that

1 <
oNpL(B) =col1 - —-Q - ——)(sin 207 + 294)
i C2

(20)

]
(=]

. Ynr, (B)
where

By

$7 = arcsin g (21)

Figure 2 illustrates a bilinear hysteresis-type force-deflection diagram. For
amplitudes below the blocking point according to equation (18), the equivalent
stiffness and damping values are

8



c2

= —(2¢y - sin 2
ont, (B) 2w( $q sin 2¢q)
(22)
2 sin? ¢
By =
T () 2¢'| -~ sin 2¢1
where
2F0
¢y = arccos |1 -~ — (23)
coB

where Fp is defined in figure 2. For amplitudes beyond the blocking point
according to equation (19), the equivalent stiffness and damping values are

C2 \
onL (B) = E;(2¢1 ~ 205 + T - sin 207 - sin 2¢,)
(24)
cos 24y + cos 24,
By = —
Yo (%) 207 - 205 + T - sin 29y ~ sin 2¢, )
where
'\
230 - B1
¢y = arccos ———
! B
(25)
B
¢, = arcsin —
2 B

J

where Bg is defined in figure 2.

SOLUTION OF THE NONLINEAR FLUTTER EQUATIONS

Equation (15), which is usually written in the form of a complex eigen-
value problem, can be solved for an arbitrary set of N equivalent stiffness
and damping values cﬁL,v(Bv) and YﬁL,v(Bv) which, because of their
amplitude dependency, correspond to a definite set of deflections BVO. Stan-
dard flutter calculation techniques can be applied to determine the flutter
boundary which is generally characterized by an undamped harmonic oscillation
of one of the generalized degrees of freedom. The corresponding generalized
eigenvector qu can be transformed into the physical deflections:

uf = oq.F (26)



The deflections BVF of the different control surfaces with nonlinear
elements which are part of the flutter mode shape uf can be determined by

ByF = &yq.F V=12 ...,N) (27)

The deflections BvF represent a consistent set of solutions if and only if
the following condition is satisfied:

noF -y = 0 vV=1,2 ... N (28)

where

w0 = |8y9] nyF = |ByF| (29)

In fulfilling condition (28), the following iterative procedure may be
employed. In a first step a set of amplitudes nvo corresponding to a set of
equivalent stiffness and damping values cﬁL'v and Yﬁle, respectively,
is selected as input data for an initial flutter calculation. At the flutter
speed resulting from this calculation, the related flutter mode deflections
ByF can be calculated by means of equation (27). The difference between the
initial amplitudes n,0 and the flutter mode amplitudes n,,F, both of which
are defined by equation (29), can be set into the more extended form

N
e=> (afF-mh2=0 (30)
v=1]
where )
nyFn,0
ng = (\) = 1, 2' - . -y N) (31)
n F
v

which means that the amplitude of the pth nonlinear element is kept constant
for all further calculations; that is,

0 (32)

To determine an optimal change An,, of the starting values nvo for the next
iteration step, € 1is successively differentiated with respect to the ampli-

tudes nvoz

dggT

J€
0 - ~2(gyF - M0 + 2 > (goF - ngY) 5
an\) a an\)

(G=1, 2' e s ey u-1' u+]' s » ey N;
\)=.|, 2' « o e u-]' u+1' e o g N) (33)
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The gradients 93t/3n,0 can be approximately determined by successive small
changes of the values nvo resulting in N - 1 flutter calculations. To
insure that each succeeding iteration step is going in an optimal direction,
signs of the changes Any,y have to be chosen as follows:

sign (Any) = -sign (34)

any0

where the finite differences An,) are much larger than those used for the
determination of the gradient 38/3n¥°. In approaching condition (30), it
may be found that the difference nN,* - nvo changes sign. In this case, the
next change An,y can be determined by interpolation between the two suc-
cessive values of mNyF - nvo. Consequently, the changes Any, for the next
iterations have to be reduced to fractions of the last value of An, found
by interpolation. The procedure as described above can be iteratively
repeated until equation (28) is fulfilled (i.e., a matching point is
obtained). Figures 3 and 4 give two examples of the functions nyF - nvo

and €,

Despite the comparatively large number of flutter calculations during the
iteration process, the numerical effort in terms of computer time remains low
because only one set of normal modes is required. Consequently, only one cor-
responding set of unsteady aerodynamic forces is necessary. The applicability
of the proposed approach is demonstrated in the following section for the exam-
ple of a sailplane system with two complicated nonlinearities.

APPLICATION TO CONTROL SYSTEM NONLINEARITIES OF A SAILPLANE
Description of Cases Studied

To obtain a better insight into the mechanism of nonlinear flutter, three
different configurations distinguished by different kinds of nonlinearities in
the rudder and aileron control system of a sailplane are investigated. As a
basis for selecting these configurations, some nonlinear data measured on the
sailplane in dynamic and static tests are available. Thus, the nonlinear char-
acteristics of the aileron system can be derived from a statically measured
force-deflection diagram (fig. 5) and from the dynamically measured aileron
resonance frequency as a function of the amplitude Bp (fig. 6). The non-
linear properties of the rudder system are available in the form of the
statically measured force~deflection diagram in figure 7 with the standard
trim stiffness removed. The special features of the three configurations can
be described as follows:

Confiquration I.- To assess the importance of strong hysteretic damping on
flutter behavior, damping is eliminated in this configuration,

11




Configuration II.- In this configuration the actual nonlinearities with
measured hysteretic damping are taken into account, but the standard trim
stiffness of the rudder system is eliminated.

Configuration III.- The rudder and aileron system nonlinearities of this
configuration are equivalent to those of the functionally complete sailplane
including the rudder trim stiffness.

The numerical values quantitatively describing the three configurations
are detailed in appendix B.

Results

The nonlinear flutter boundaries of configurations I, II, and III are
depicted in figures 8, 9, and 10 in the form of the amplitude ratios nAFVB1’A
and nRF/B1,R as functions of the flight speed. Figure 8 shows that the arti-
ficial configuration without damping results in a linear flutter behavior with
a flutter speed independent of amplitude up to the blocking point at the kine-
matic limit (nRF/Bl,R = 1). Above that amplitude, the flutter speed drops
sharply as the amplitude further increases. This configuration has been inves-
tigated to form a basis for demonstrating the effects of nonlinear hysteretic
damping such as that inherent in the more realistic configurations II and III
to be discussed next.

As shown in figure 9, the influence of hysteretic damping results in a
considerable stabilizing effect compared with configuration I. This means that
between 195 and 235 km/hr, the nonlinear flutter boundary is characterized by
increasing flutter speed as the amplitude ratios nRF/B1,R and nAF/B1,A
decrease. However, the system at speeds within the above given range is stable
only below a certain amplitude level, which can easily be exceeded by external
excitation due to gust or maneuver loads resulting in violent divergent flutter.
This special type of nonlinear flutter is contradictory to the wide-spread
opinion that the effect of structural nonlinearities on flutter results always
in limit cycle flutter vibrations.

The functionally complete sailplane with a trim stiffness in the rudder
control system is investigated in configuration III. As shown in figure 10,
the additional spring stiffness results in considerable destabilization com-
pared with configurations I and II. In a comparatively large speed range
between 180 and 225 km/hr, external perturbations of not more than about
50 percent of the blocking amplitudes of both the aileron and the rudder are
sufficient to induce violent flutter.

As for experimental verification of this flutter behavior, it is worth
mentioning that some time before the first routine flutter clearance on the
basis of GVT and flutter calculations, a number of flight flutter tests were
accomplished. The most remarkable result of these tests was found at about
180 km/hr. According to test pilot reports and observations fram the ground,
extremely lowly damped free vibrations with large amplitudes could be excited
by pilot-induced rudder oscillations at an estimated frequency of between 3 and
5 Hz, which forced the rudder to amplitudes near the blocking amplitude. On

12



the basis of figure 10, a small increment in speed would have resulted in
violent flutter. It should be mentioned that the flutterlike vibrations were
eliminated by mass-balancing the rudder.

CONCLUDING REMARKS

Based on standard flutter calculation techniques in the fregquency domain
and on the equivalent linearization approach, a method has been developed to
predict the flutter behavior of complete airplanes with multiple sets of
concentrated nonlinearities. The applicability of the method has been demon-
strated for the example of antisymmetrical flutter of a sailplane with nonlin-
earities in its control systems. The results are in good agreement with obser-
vations during actual flight tests of the sailplane.

In future investigations, emphasis should be placed on the following
problems:

1. Investigation of service-life-dependent alterations of concentrated
structural nonlinearities

2. Investigation of mass, damping, and stiffness alterations due to pilot
feedback

3. Amendment of ground vibration test methods and flight and wind-tunnel
flutter test techniques by paying more attention to nonlinear effects

4. Development of suitable methods for the calculation of unsteady aerody-
namic forces in the time domain for all flight speed ranges

5. Application of digital and analog time domain techniques to solve tran-
sient problems such as those due to gust loads, maneuver loads, and
sudden failure of control system devices

6. Investigation of the frequency-dependent dynamic properties of non-
linear elements

7. Investigation of nonlinear effects on design, test, and operation of
flutter suppression and vibration reduction systems

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

February 8, 1980
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APPENDIX A

MODAL DATA OF A SAILPLANE IN A MODIFIED LINEARIZED TEST CONFIGURATION

To obtain a largely linear test configuration, the nonlinear elements
in the aileron, rudder, and elevator control mechanisms of a sailplane were
replaced by linear lowly damped spring elements. A sketch of the sailplane
investigated and the strip arrangement used to calculate the unsteady aerody-
namic forces is shown in figure 11. Tables I, II, and III list the five lowest
antisymmetrical normal modes and the geometrical data of the strip scheme. As
shown in figure 11, the normal mode displacements referring to the midstrip
sections are split up into the quarter-chord point bending deflection h, tor-
sion @, and control surface rotation B. The generalized masses M., the nor-
mal frequencies £, =w,/2", and the damping loss angles 7Y, are listed in

table 1IV.

Since this investigation is of an antisymmetrical flutter case, only the
rudder control system and the aileron control system must be taken into
account. Correspondingly, in accordance with equation (7), only the row
matrices & and QA describing the antisymmetrical hinge rotation angles
Br,r and Bp,r of the rudder and the aileron (VY = R,A) are given in table V.

14



APPENDIX B

QUANTITATIVE DETERMINATION OF NONLINEAR CHARACTERISTICS OF
CONFIGURATIONS I, II, AND I1T
Configuration I
The following values are chosen for describing the nonlinearities of both

the rudder and the aileron system by bilinear zero damping force-deflection
diagrams such as those shown in figure 1:

o3| ,A = 10 N—-m/rad < R =0
cz,a = 500 N-m/rad cz,r = 500 N-m/rad
B]’A = 20° B],R = 300

The stiffnesses C2,Ar ©C1,Rs and cy,R are estimated from figures 5 and 7,
respectively. Stiffness cj,p can be approximately calculated from

M
c1,a = 2—2(2@@) 2 (27£a,min) 2 (B1)
where
M, generalized mass of normal mode r = 2 (see table IV)
?A ratio of aileron chord length to wing chord length at inboard edge
of aileron
z half-chord length of the wing at inboard edge of aileron
fa,min minimum resonance frequency of aileron system (see fig. 6)

Application of equation (B1) implies that the normal mode r = 2 fundamentally
consists of motion of the aileron system (see tables I, II, and III). The
equivalent stiffnesses oyp,a(B) and cyp,r(B) of the aileron and the rudder
system calculated by means of equation (20) are shown in figure 12.

Configuration II

This configuration is characterized by hysteresis-type force-deflection
diagrams in both the aileron and the rudder system., The force-deflection dia-
gram of the rudder system shown in figure 7 can be approximated by a bilinear
diagram of the kind sketched in figure 2. Because the trim stiffness is elimi-
nated in this configuration, the following quantitative data can be selected:

15



APPENDIX B

¢1,r =0 Bq,r = 30°

c2,R = 500 N-m/rad Fg,6g = 7 N-m

The corresponding equivalent stiffness and damping functions oy, g(8)
and YNL,R(B) are plotted in figure 13. The equivalent aileron stiffness
onL,a(B) can be calculated from

My _ _
oNL,A(B) = 2—(2TA2)2[2n £a(B)12 (B2)
The terms M,, ?A, and % are already defined with equation (Bl1). Figure 6
shows the resonance frequency fp(B) of the aileron system measured as a func-
tion of B. The equivalent aileron damping loss angle can be calculated
approximately from

4F0 ,A
T onp,a(B)B

YNL, A (B) (8 s By,n) (B3)

and

4Fg ,aB1,a

YNL, A (B) (B < Bq,a) (B4)

oNL,a (B)B2
where
Fo,a = 0.283 N-m

The terms oyr,a(B) and yyp,aA(B) are plotted in figure 14.

Configuration III
The aileron characteristics of this configuration are equivalent to those
of configuration II. 1In contrast, the rudder characteristics change due to an
additional trim stiffness attached to the rudder pedal mechanism. The equiva-
lent stiffness can simply be calculated by adding the estimated trim stiffness
cg = 33.12 N-m/rad

to the equivalent stiffness of configuration II:

I
cuifR(B) = cﬁi,R(B) + ct (B5)

16



APPENDIX B

For no damping in the trim stiffness, the damping loss angle changes to

11 YL, (B) oNL,r®)
YNL,R(B) = (B6)

‘-‘bI:%.,R(B) + ct.

Both cﬁ{fR(B) and Yé{fR(B) are shown in figure 15.

Artificial Linear Configuration
Finally, the properties of the artificial linear elements were determined
by means of dynamic tests to be
YL,A ~ 0.310 YL,R ~ 0.272

cL,a = 51.25 N-m/rad cL,R = 21.4 N-m/rad

Thus, all the data are known to set up the nonlinear equations of motion
(eq. (15)).
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TABLE I.- STRIP SCHEME AND FIVE ANTISYMMETRICAL NORMAL MODE SHAPES FOR WING
Strip mo. « v v . 0 o .| 1 2 3 4 5 6 7 8 9 10
Width, s, om . - - . .1 30| 157.5 150| 103.5 50 50 50 50 50 59
‘l-!a—lg—chord 1<;1gth ) ] |
of wing, %, cm . . .| 46.38| 44.56| 41.76| 39.44] 36.50] 33.50| 30.50| 27.s0] 24.50] 21.23
Aileron chord length T
ratio, Ta . . . . - 0 0 0 o o0.264] o0.272] o0.280] 0.288] 0.296 0
B h, em .« v v . . 0 0 0 o 0 0 0 0 0 0
Mode fow rad .. .. 0 0 0 0 0 o] 0 0 0 0
B, rad . ... 0 0 0 0 0 0 0 0 0 0
h, cm . . . . .|-0.0094|-0.0269 |~0.0263|-0.0356 |~0.0363|~0.0325|-0.0250|-0.0125|~0.0060] 0.0060
Mode fas raa . ... 0 0 0 0 0 0 0 0 0 0
B, rad . ... 0 0 0 ol 0.0513| 0.0520] 0.0528 0.0535| 0.0560 0
- [h, am. ... .| 0.0063| 0.0356| 0.0450| 0.0063|-0.0375|-0.0825|-0.1340-0.1950|-0.2640 |-0.3470
':°Se3 a, rad . . . . 0 0 0 0 0 0 0 0 0 0
B, rad . . . 0 0 0 0] 0.0520| 0.0540| 0.0555| 0.0560| 0.0560 0
h, em . . ...| 0.0281] 0.1710| 0.3330| 0.2720 0.1250|-0.0188|~0.1980 |-0.4420]~0.7360| -1.110
’r‘°‘=ie4 o, rad . . . . 0 0 0 0 0 0 0 0 0 0
B, rad . ... 0 0 0 0 0 0 0 0 0 0
I I I
hy om . o v . . 0 0 0 0 0 0 0 0 0 0
':°‘=’e5 a, rad . . .. 0 0 0 0 0 0 0 0 0 0
B, rad . . .. 0 0 0 0 0 0 0 0 0 0
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TABLE II.- STRIP SCHEME AND FIVE ANTISYMMETRIC NORMAL MODE SHAPES FOR ELEVATOR

Stripno. . . . . . . 1 2 3 4 5
Width, s, cm . . . . 7.5 32.5 30 30 30
Half~chord length
of elevator, £, cm 25.75 24.5| 23.25| 20.81| 19.69
vode |Prom - . . 0 0 0 0 0
r=11y, rad . . . 0 0 0 0 0
wode |BrGm . . . -0.0125 | -0.0188 | -0.0513 | -0.0806 | -0.0844
L=2g rad. .. 0.0008 | 0.0008| 0.0013| 0.0017| 0.0017
wode |BrOm ... 0.0575 | 0.1725| 0.3581 | 0.5406| 0.7125
r=31, rad.. . -0.0005 | -0.0009 | ~0.0005 | -0.0002 | -0.0009
h, em . . . ~0.0125 | -0.0238 | -0.0531 | 0.0738 | -0.0863
Mode
L =41 rad. .. 0 0 0 0 0
h, em . . . 0.0838 | 0.2495| 0.4969 | 0.7431| 1.0000
Mode
L =3y, rad. . . 0| -0.0005| -0.0012 | -0.0013 0
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TABLE III.- STRIP

SCHEME AND FIVE ANTISYMMETRIC NORMAL MODE SHAPES

FOR VERTICAL TAIL

Striprno. e s s s s o o 1 2 3 4 5
Width, s, em. . . . . . 50.64 44.73 37.00 28.60 22.10
Half-chord length of
vertical tail, %, cm . 20 30 40 31.5 21
—__l:udcie;‘chord length '
ratio, T . . . . . . 0.443 0.450 0.459 0.469 0
- h, em- .¥. .« o . 0.0313 | -0.0940{ -0.1565] -0.0940 | -1.1200
f°2e1 a, rad . . . . . 0.0043 _0'00435 -0.0113 | -0.0140 0.1020
B, rad . . . . . 0.1000 0.1000 0.1000 0.1000 0
h, em . . . . . -0.0625} -0.0838 | -0.1163 | -0.1525 | -0.1838
Mode | raa . .. L. 0 0 0 0 0
B, rad . . . .. 0 0 0 0 0
h, em . .. .. 0.2688 0.3975 0.6063 0.8563 1.044
?oge3 % rad + . . . . 0.0025 0.0025 0.0032 0.0061 | 0.0085
B, rad . . . .. 0 0 0 0 0
h, em ... .. -0.2038 | -0.2288 | ~0.2750 0.3400 | -0.3688
?oge4 @, rad . . . . . -0.0018 | -0.0018 | -0.0025 | -0.0039 | -0.0025
B, rad . . . .. 0.0024 0.0024 0.0024 0.0040 0
h, cm .“. .« o . ~0.2063 | -0.1325 | -0.0250 0.0938 0.1212
f°jes o, rad . . . . . ~0.0017 { -0.0019 | ~0.0019 | -0.0012 | 0.0058
B, rad . . . .. 0.0064 0.0064 0.0064 0.0064 0
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TABLE IV.~ MODAL CHARACTERISTICS OF THE FIVE LOWEST ANTISYMMETRICAL

NORMAL, MODES OF A SAILPLANE

Mode, r My, kg—-cm2 f,, Hz Yr Remarks
1 19.22 1.68 0.272 Rudder
2 3.50 4.90 .310 Aileron
3 12.90 5.39 .042 Tail - aileron
4 15.40 6.69 .019 First antisymmetrical wing
bending
5 3.24 8.57 .078 Elevator

TABLE V.- ROW MATRICES CONTAINING HINGE ROTATIONS By , AND Bp , OF RUDDER

AND AILERON ACCORDING TO EQUATION (7)

f0.1,0,0,0.0024,0.0064]

Or

¢ = [0,0.0573,0.0520,0,0]
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Figure i.- Bilinear force-deflection diagram without damping.
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Figure 2,.- Bilinear hysteresis-type force-deflection diagram.
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Figure 3.- Some characteristic functions near matching point.
Configuration II; ngl/By g = 0.858.
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Figure 4.- Functions (naF - na0)/8, ,A and V versus nAo for special case of
three different matching points. Configuration III; nRo/B1,R = 0.5.
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Figure 5.- Measured force-deflection diagram of aileron system for two different
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Figure 6.- Measured resonance frequency of antisymmetrical
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Figure 7.- Measured force-deflection diagram of rudder system
with trim stiffness removed.
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Figure 11.- Schematic view of a sailplane.
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Figure 13.- Hinge stiffness and damping of rudder without trim stiffness

versus hinge angle.

Configuration II.
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